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– Coastal development
• Nutrients, toxin, and sediments from agriculture and urban 

development
– Over-exploitation of marine species

• Loss of critical functional groups
– Marine pollution

• Sewage, petrochemicals, plastics
– Physical destruction

• Tourism; destructive fishing
– Climate change

• Rising sea temperatures, falling alkalinities
• Perceived by many as the primary threat to coral reefs
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The biosphere is already changing 
(after an increase of only 0.8oC)
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– Walther et al. (2002)
• Notes the exponential increase in palm forests in alpine 

Switzerland, US & European butterflies and birds now up to 200 km 
more poleward than 50 years ago. Most ecosystems are changing.  

– Parmesan and Yohe (2003)
• Build statistical case for climate change trends
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“Although we are only at an early stage in the projected trends 
of global warming, ecological responses to recent climate 

change are already clearly visible.”

A “diagnostic (climate related) fingerprint was found for 279 
species. This suite of analyses generates ‘very high 

confidence’ (as laid down by the IPCC) that climate change is 
already affecting living systems.

– Environmental changes
• Increasing sea temperatures and sea levels
• Decreasing carbonate alkalinities
• Changing currents and global circulation

– Biotic responses abundant already
• Warm-water fish populations have advanced poleward 

(Holbrook et al 1997)
• Intertidal communities moved poleward over the past 70 

years (Southward et al. 1995).
• Krill populations in Antarctica are 10% of what they were 

40 years ago – salps, more open water species, have 
increased 10 fold.  Impacts on penguin populations 
reported (Barbraud and Weimerskirch 2001).

• Mangroves have expanded and salt marsh contracted.
• Many other examples.
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• Many other examples.1
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X

1. Model largely correct

2. Explains wide array of 
phenomena such as 
light (PAR, UVR), flow 
effects

3. Explains how short-
term acclimation can 
come about through 
acclimation to light
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• General stress 
response to thermal 
stress in the presence 
of light

• Complex responses –
indicating general 
oxidative response –
ie bleached corals 
suffer from enormous 
quantities of active 
oxygen. 
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suffer from enormous 
quantities of active 
oxygen. 

Montastraea annularis (Florida keys)
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• Irradiance is needed to 
get up-regulation of 
stress proteins

• No light , no bleaching
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• Superoxide dismutase
(SOD) is stimulated under 
heat and light (HL)

• Functional D1 protein 
(from PSII) is much lower 
when coral is subjected to 
heat and light.
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Dunn et al. (2002)Programmed cell death?Programmed cell death?

• PCD involves activation 
of ‘cell removal’ 
pathways.

• Many of the markers 
for PCD have been 
found in bleaching 
symbiotic associations

• Sequence:

• PCD involves activation 
of ‘cell removal’ 
pathways.

• Many of the markers 
for PCD have been 
found in bleaching 
symbiotic associations

• Sequence:

Environmental 
stress

Photosynthetic 
dysfunction

Removal by 
PCD

Oxidative 
damage
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1. While a coral colony will have a single thresholds determined by
temperature and contributing factors (light, history, genetics, acclimation 
etc), a reef will have a band of thresholds that wil vary according to 
different species tolerances.

2. At the lower end of this band, community change will be seen.  At the 
higher end, reef scale mass mortalities will eventuate.
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Degree Heating Months = 
Intensity of anomaly X time
Degree Heating Months = 
Intensity of anomaly X time
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DHM and the future (B2 scenario)DHM and the future (B2 scenario)

Two categories of response can be defined:

Degraded Reefs:  Reefs that experience 0.5 Degree Heating Months 
(DHM) during the summer months will experience mass bleaching.  
They will recover if stress levels return to previous levels.

Remnant coral reefs:  Reefs that experience near total coral mortality: 
Reefs that are exposed to 3.2 DHM per year or more will experience 
almost complete mortality of their coral populations.  Logic – corals 
don’t recruit and grow fast enough to have reefs recover within 3 
years from a total mortality.
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• Reviewed extensively by Brown and others
• Habeeb and Edmunds (in press) show acclimation of corals to short-

term stresses.
Acclimatization:  Phenotypic change to natural environment

• Berkelmans and Willis  (2000) have demonstrated seasonal 
acclimatization in several species.

Adaptation:  Genetic change in coral population
• Glynn (1983) and many others have observed that different species of 

corals have different thermal thresholds.  
• Coles et al. (1976) and later authors have demonstrated that corals are 

adapted to the temperature conditions around them – corals at different 
latitudes have different thermal thresholds.

• Berkelmans (2002) – latitudinal variation in thresholds in a single 
ecosystem

Adaptation:  Genetic change by swapping symbionts
• Recent reviews by Baker, LaJeunesse
• Definite switches in evolutionary time 

– Loh et al. (2002): Pocillopora damicornis has clade A in Japan, D in 
Indonesia and C in Australia

– Rodriquez-Lanetty et al. (2001): Plesiastrea versipora has clade A and B in 
Southern Australia and C on the Great Barrier Reef

– Among others
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Acclimation, acclimatization and adaptation 
(definitions are critical) have been 
demonstrated in reef-building corals.
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Evidence of rapid adaptation (past 20 years)?Evidence of rapid adaptation (past 20 years)?

• Glynn et al. (2001)
– Observed less bleaching and mortality in Eastern Pacific in 1997-98 than 

in 1982-83.  Despite fact that temperatures may have been higher in 
1997-98

• Obura (in prep)
– Lower impacts in recent bleaching (2003) in East Africa to that seen in 

1997-98.  Similar speculation to Glynn et al. (2001)
• Baker (2001)

– Possible switching of symbionts (or is this re-mixing of existing types)

Problems:
• Sample design between times?  

– E.G. site variability within locations not strictly controlled
• Low precision measurements of bleaching (bleached, non-bleached, normal)

– Jones 1997, Fitt et al. 2001, Warner et al. (2002) all point to the fact that up to 
30% of the cells can be missing before a coral will be classified as bleached.

• Environmental conditions complicated by secondary factors 
– As shown by Mumby and others – clouds can ameliorate the effect of thermal 

stress
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A. Maximum rates of change in carbon dioxide (using data from Barnola et al. 1999). 
Period ppmv per 100 yr 
24,315 to 9.523 yr BP 0.52 + 0.080 
130,653 to 143,732 yr BP 0.72 + 0.034 
240,006 to 248,364 yr BP 0.96 + 0.097 
325,400 - 355,795 yr BP 0.30 + 0.043 
Recent (last 100 yrs) 100 
Projected (B1) - 2002-2100 150 
Projected (A1T) - 2002-2100 330 
Projected (A1B) - 2002-2100 530 

 
B.  Maximum rates of change in temperature (using data from Petit et al. (1999). 
Period oC per 100 y 
11,191 - 16,808 BP 0.092 + 0.005 
130,467 - 145,006 yr BP 0.135 + 0.003 
237,866 - 241, 792 yr BP 0.227 + 0.005 
322,638 - 332,164 yr BP 0.117 + 0.003 
Recent (last 100 yrs) 0.600 
Projected (B1) - 2002-2100 2.500 
Projected (A1T) - 2002-2100 2.400 
Projected (A1B) - 2002-2100 2.800 

 

Table 1.  Regression slopes calculated for periods of rapid change in Antarctic (interglacial-
glacial transitions) within the Vostok ice core.  Also shown in table are rates of change over the
last 100 years and that projected to occur from climate change over the next century. 
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• Two or more partners 
(genomes) not one

• Dinoflagellate contributes 
a major part of thermal 
tolerance. Perhaps 
changing symbiont can 
result in tougher holobiont 
(host-symbiont genotype)

• Includes de novo 
acquisition or remixing of 
symbionts 

• And - perhaps - bleaching 
is adaptive (Buddemeier 
and Fautin 1993)?
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Direct acquisition of new symbionts is probably debatable. 
However, remixing of existing ones has been observed.
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Baker (2002, Nature) shows this mechanism to operate. 
However, no new combination arises from this process 
(its phenotypic in nature)
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Economic/Social
Subsistence
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diversity
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Contributing factors 
(light, flow) and 
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reduced grazing)

Managing for ecological resilienceManaging for ecological resilience
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(light, flow) and 
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• Evidence that healthy reef 
systems recover faster from 
bleaching

• Factors that impact growth and 
reproduction of corals will 
ensure more immediate and 
devastating impacts of climate 
change.

• Grazers play a role in avoiding 
“permanent” phase shifts
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PATTERNS OF CHANGE
• Climate change (of only 0.8oC) has changed the biosphere
• Projected changes (2-6oC) have major implications for all ecosystems including coral reefs
PHYSIOLOGY
• Warmer than normal sea temperatures trigger bleaching
• Thermal stress results in failure of photosynthetic apparatus, which leads to oxidative stress in 

host and symbiont.
• This may trigger apoptosis (programmed cell death)
• PAR, UVR and flow play important secondary roles
• The increase in disease is probably related directly or indirectly to rising stress
THRESHOLDS 
• Thermal thresholds form a band of sea temperatures in which responses range from community 

change to mass mortality.
• Projected increases under even the mildest climate scenarios will rapidly exceed the known 

thermal thresholds of populations of corals
• Corals and coral reefs will experience conditions that have not seen for 400,000 years (if not at 

least 20 million years)
• The weight of evidence indicate serious modifications to the function of coral reef ecosystems.
ACCLIMATION AND ADAPTATION 
• Acclimation is limited ultimately by genotype and therefore is not a “solution” to climate change.
• Corals and their symbionts have adapted to sea temperature in the past
• Corals have swapped their symbionts to adapt to environmental conditions in the past.
• Re-mixing existing ratios of symbionts is a phenotypic not genotypic change.
• Changes, however, have occurred in evolutionary time not the ecological timeframe of bleaching.
RESPONSES 
• Reefs must be urgently managed for maximum ecological resilience
• Factors contributing to climate change must be rapidly brought under control.

PATTERNS OF CHANGE
• Climate change (of only 0.8oC) has changed the biosphere
• Projected changes (2-6oC) have major implications for all ecosystems including coral reefs
PHYSIOLOGY
• Warmer than normal sea temperatures trigger bleaching
• Thermal stress results in failure of photosynthetic apparatus, which leads to oxidative stress in 

host and symbiont.
• This may trigger apoptosis (programmed cell death)
• PAR, UVR and flow play important secondary roles
• The increase in disease is probably related directly or indirectly to rising stress
THRESHOLDS 
• Thermal thresholds form a band of sea temperatures in which responses range from community 

change to mass mortality.
• Projected increases under even the mildest climate scenarios will rapidly exceed the known 

thermal thresholds of populations of corals
• Corals and coral reefs will experience conditions that have not seen for 400,000 years (if not at 

least 20 million years)
• The weight of evidence indicate serious modifications to the function of coral reef ecosystems.
ACCLIMATION AND ADAPTATION 
• Acclimation is limited ultimately by genotype and therefore is not a “solution” to climate change.
• Corals and their symbionts have adapted to sea temperature in the past
• Corals have swapped their symbionts to adapt to environmental conditions in the past.
• Re-mixing existing ratios of symbionts is a phenotypic not genotypic change.
• Changes, however, have occurred in evolutionary time not the ecological timeframe of bleaching.
RESPONSES 
• Reefs must be urgently managed for maximum ecological resilience
• Factors contributing to climate change must be rapidly brought under control.







– Environmental changes
• Increasing sea temperatures and sea levels
• Decreasing carbonate alkalinities
• Changing currents and global circulation

– Biotic responses abundant already
• Warm-water fish populations have advanced poleward 

(Holbrook et al 1997)
• Intertidal communities moved poleward over the past 70 

years (Southward et al. 1995).
• Krill populations in Antarctica are 10% of what they were 

40 years ago – salps, more open water species, have 
increased 10 fold.  Impacts on penguin populations 
reported (Barbraud and Weimerskirch 2001).

• Mangroves have expanded and salt marsh contracted.
• Many other examples.
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Acclimatization: longer-term phenotypic changes in 
response to changes in the natural environment. 

Adaptation: Changes in the genetic structure of a 
population a species in response to 
environmental changes.  Usually the result or 
natural selection or migration.

Note – a change in community structure in 
response to environmental change does not fall 
under the definition of adaptation.
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Colour chart project (to be launched in July 2003)
Siebeck, Marshall, Hoegh-Guldberg

2-types of useful data collection

Time-series of selected
colonies

“fingerprints” of a reef at 
different times: Data of 
many random corals

Heron reef flat during and after 
the 2002 bleaching
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oCoC
Bleaching rids coral host of one genotype which 
is replaced by a second more tolerant genotype.
Bleaching rids coral host of one genotype which 
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At greater time scales – corals can acquire 
completely new symbionts 
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• Loh et al. (2002)
– Pocillopora damicornis has clade A in Japan, D in Indonesia and 

C in Australia
• Rodriquez-Lanetty et al. (2001) 

– Plesiastrea versipora has clade A and B in Southern Australia 
and C on the Great Barrier Reef

Evidence that swapping does occur.  However, this is not 
evidence that this happens in the ecological time frame 
of a bleaching event.   Given the complexity of 
endosymbiosis, establishing novel symbioses probably 
will take decades and centuries as opposed to years.
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