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Climate Change and Coral Bleaching
A Focus Areas for US CRTF
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a. Land-based Sources of Pollution d. Recreational Overuse and Misuse
e-1. Climate Change and Coral Bleaching

b. Overfishing

c. Lack of Public Awareness e-2. Disease



The changing climate of coral reefs

temperatures (2 - 4°C hotter)

sea level
(0.1 - 0.4 m higher)

atmospheric carbon dioxide
(3 X more)

cyclone regimes
(more extreme)

IPCC Predictions for this Century



US Coral Reef Task Force:
The National Action Plan

> calls to strengthen the effectiveness of existing
MPAs, and establish new MPAs where appropriate

‘Do MPAs have a role in mitigating the effects of climate change?

‘Where are the most appropriate places in a warming world?



ICRI believes MPAs do have a vital role as a
measure to mitigate regional impacts of
climate change

Recommendations from ITMEMS 2 March 2003

» Factor risk of bleaching impacts into
management...

» Support resilience of coral reefs through:
» good MPA design,
> MPA networks and,
» reducing threats within management control.
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Good MPA design and
management

™~ —

Ecological Resilience

Settlement Growth
Good MPA design @ Good management
means collapsed provides good
reefs can rely on environment for
neighbors for reef- settlement and
building larvae growth of reef
An MPA network sllifeire

may require local
threat reduction



Try to pick winners or simply spread the risk?

twork



'‘Buying time’ for our reefs

Average global air temperature
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Implications for coral reefs - depend on where



Joanie Kleypas‘
John Guinotte
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The heat

..and a local scale... hazard -
summer of
2001-2




Different places have different level of future hazard
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That was the hazard - what about the impacts?

Depth (m)
~ f ~— f 0
100
Coastal Mid -shelf Offshore 200
< 150 km >
5 Catastrophic
80 .....................
(b}
4 £
% 60 S
3 éa Offshore reef Medium
é %4() T S, s —
ORSS
2 2
% 20~ Al o
1 g Mid-shelf reef:
O ol AN N Very low
28 29 30 31 32 ‘Setback’
R. Berkelmans Temperature ° C

depends on the reef's location, type and experience



Risk = hazard x negative consequences

Therefore there are two risk minimizing strategies

1. Minimize the hazard
2. Minimize the negative consequences

Risks to coral reefs - depends on
where they are
(both hazard and vulnerability
vary in space)

Risk - is changing as climate
changes
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Simulating probable future risks
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Consequences
of a high tech
future
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Different
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Are some
40 - global regions
30 and/or local

reefs at lower
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risk?
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Tools and data requirements: issue at this
place - do
-CSIRO ReefClim model they exist?

*Daily(?) sea temperature (~ 10y)
‘local bleaching thresholds

Your reef?



Wha’r do mcreasuhg bleachmg days per surﬁmer mean for oral
communities? Appearance? Ecology?




Decades
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1 ) g .
Ecology’ (coral cover + composition and size structure)
vlace, same scenarios
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Needed: local management that works to foster resilience
(I.e. effective MPAs and threat reduction)




The models match observations so far...

reefs have tracked the 1990s’' baseline
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Hard coral
cover

dynamic equilibrium
Seaweed$
Cﬁr‘ S
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2020 2050

Seaweeds

Staghorn and table corals

Porites heads and thickets

Management
that has
worked

(Benefit of
hindsight!)



Seaweeds Management
that has
hot worked
Hard coral -
cover
1990 2020 2050
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The challenge: without the benefit
of hindsight..

Picking winners (/fower cost, higher
risk strategy)
Pick these

Monitoring
Avoid these

alone will not

. give you the

answer!
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Needed to pick places that will be winners:

1. Identifying places with low hazard.

2. A realistic basis for using local ecological
knowledge to rate individual reefs according to their
likelihood of desirable versus undesirable future
reef trajectories

» dynamic equilibrium

-change in coral composition only (drift)
‘phase shift

-collapse




..... using local ecological knowledge

How post-bleaching impact surveys can help us pick winners

[egrea Heating Weeks for lost 90 days — 1,/2%72002




Janice Lough

Craig Steinberg

Al Strong (NOAA) Mike Mahoney
William Skirving (NOAA) Mary Wakeford
John Guinotte (KU/JCU) Emre Turak
Rod Salm (TNC) Ray Berkelmans
Paul Marshall (GBRMPA) Stuart Kininmonth
Roger Jones (CSIRO) Mary Wakeford
Peter Whetton (CSIRO) Madeliene Van Oppen
Glenn De’ath
Scott Wooldridge

The Nature

Conservancy

GREAT BARRIER REEF OF MARINE SCIENCE
MARINE PARK AUTHORITY



Field access to GIS with high
resolution SST maps and 10 year
o Temperatire | satellite archive were invaluable to
anomaly _‘ post-bleaching impact assessment

Cumulative heat stress summer
2001-2

B. Three day maximum
temperature

Maximum heat stress summer
2001-2

C. Classification of summer
temperatures

Temperature °C

e

Acclimatization regime
1990s

PCA Zones









1 km pixels

Index of
summer

GIS was
created for
selection of
assessment
sites

Normal Bleached Dead

Field assessments of sites
One bar per site



Did the 2002 index of hazard (heat
anomaly) explain the bleaching impact?

b 28 y = 9.3933Ln(x) + 29.4
R®=0.4253

20 40 60 80
Summer 2002 heat anomaly index

Acclimatization regime? e

- Interactions and

conditional dependencies
with other causative
factors

- Inaccuracies in SST
- Not the best index of

SST

Not the best index of
bleaching impact
Differences in
vulnerability of coral
species and communities



Which locations passed the test of summer 2001-2?
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What made those reefs resistant?

Were they exposed to an anomaly?
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Turbid water reefs Clear water reefs

averages from
satellite SST
M. Mahoney

W.Skirving and

C.Steinberg
! L
Places with reliable mixing with cool Right" history of acclimatization
waters ‘Tough' coral communities present
Places where strong flows resuspend —— Prevalence of heat resistant

sediments and increase shading

zooxanthellae genotypes
Deep reefs genotyp



Better explanatory power used in combination
than when tested singly

Promising insights using a Bayesian approach

T

GIS proxies for mixing, cooling and
acclimatization

Categories of coral community types and habitats

! L
Places with reliable mixing with cool Right" history of acclimatization
waters ‘Tough' coral communities present
Places where strong flows resuspend —— Prevalence of heat resistant

sediments and increase shading

zooxanthellae genotypes
Deep reefs genotyp



NOAA 50 km
products
hotspots,
Degree

heating weeks

A Mixing
index using
current
vectors depth
model

An Index for
ease of mixing
with cool

water from
100 m

Index for
Acclimatization
regime

Categories of

reef habitat
and community
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‘Learnt ]
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AIMS 1 km Index of Index of
SST products bleaching for mortality 1. Ecology and post-
'sites’ for 'sites’ bleaching impact

surveys



>'..reefs are deteriorating from coral
bleaching and mortality due to warming
seas....

»'..counteract these trends by adopting a
number of risk minimising strategies.’

Statement from Second International Marine Ecosystem
Management Symposium,

Manila, Philippines, March 24-27 2003



Thank you



Local conservation actions

Sediments
and fishing

Nutrients/
organic
matter and
fishing

Turf algal
dominance

Various algae,
heterotrophs
and bioeroders

Internal
bioeroders

Fleshy algae reduction
with reduced fishing

Fleshy brown
algal
dominance

N ¥

Fleshy algal
reduction with
continued fishing

Pollution
and fishing

. Fish, coral and |
. coralline algae
. dominance :

Fishing

Urchin
recruitment

Urchin
diseases

Large-scale
sea urchin
reduction with
continued
fishing

Turf algal
dominance

Sea urchin reduction
with reduced fishing

Sea urchin
and turf
dominance

"

Small-scale sea
urchin reduction with
continued fishing

(McClanahan,
Polunin and Done)



	ICRI believes MPAs do have a vital role as a measure to mitigate regional impacts of climate change

